

Removing Hazardous Fuels from Forests to Reduce Greenhouse Gas Emissions from Uncharacteristically Severe Wildfires

John Kadyszewski & Sandra Brown WESTCARB Terrestrial Leader Winrock International (703) 525-9430, jpk@winrock.org

Third Annual Climate Change Research Conference, Sacramento, California September 14, 2006

WESTCARB Is One of Seven DOE Regional Carbon Sequestration Partnerships

- Options for terrestrial and geologic CO₂ storage are evaluated
- Participation by 70 organizations provides broad stakeholder representation
- California Energy
 Commission is prime contractor

Summary

- Results of research to estimate carbon benefits from reducing GHG emissions associated with fire
- Does it make economic sense to remove the accumulation of hazardous fuels from forests?
- Forest fuels as feedstocks for biofuels and power

Photos: Dr. Sam Sandberg, USDA Forest Service

Not all forest fires are the same

Not all forests are the same

Potential Sequestration Benefits from Improved Fuel Management

- Bring fire to the ground
- Reduce fire severity
- Reduce GHG emissions from loss of carbon stocks
- Increase growth rates in residual stand

Fires in California

Total area burned in 1990-2004 = 5.5 million acres

So far in 2006, 334,000 acres

Emissions from fires during period ~ 26 MMT CO₂ plus other GHGs

CA forests at high/ very high risk of fire that could benefit from treatment = 16.2 million acres

About 2.2 million acres meet constraints for treatment used in analysis

Constraints: Slope, yarding distance, block size and distance to biomass plant

Example from Cone Fire -- 2002

 Treatments affect changes in carbon stocks attributable to fire

Area treated with thinning and prescribed burn prior to fire.

Area untreated prior to fire.

Source: "Cone Fire Tests Fuel Reduction Treatment Effectiveness," Gary Nakamura, UC Cooperative Extension, 2002. Photos: USFS PWS Research Station, Redding, CA.

Results for Shasta County

Shasta County					
Forest land at high or very high risk of fire (acres)	1,410,000				
High or very high fire risk land that satisfies constraints (acres)	215,000				
Potential removable fuel based on field data (tons C/acre)	9.3				
Total removable fuel from treatable land (BDT biomass)	4 million				
Potential emissions credits (\$/acre)	@\$10/tCO ₂ , \$350-700/acre				

Treatment Costs

Treatment	Product yield	Representative Costs		
Prescribed fire	No	\$35-300/acre, average \$92/acre		
Masticate and leave on site	No	\$100-1000/acre ²		
Cut-pile-burn	No	\$100-750/acre ²		
Cut-skid-chip-haul	Yes	\$560 – 1634/acre ³ or \$34-48/BDT + haul cost ³		

- 1 USDA Forest Service R&D/Western Forestry Leadership Coalition, 2003.
- 2 Chalmers and Hartsough, no date
- 3 Fried et al. 2003

More detailed information on the data and analysis for California covered in this presentation can be found in:

- "Carbon Supply Curves for Forest, Range, and Agricultural Lands of California: Final Report," March 2004.
- "Carbon Supply from Changes in Management of Forest, Range and Agricultural Lands of California: Forest Fuel Reduction," Update October 2005,
- "Baseline Greenhouse Gas Emissions and Removals for Forest and Rangelands in Shasta County, California," August 2006.
- "Carbon Supply from Changes in Management of Forest and Rangelands in Shasta County, California," in review.
- Available online now or soon at <u>http://www.energy.ca.gov/pier/final_project_reports/</u>

Reports prepared by Winrock International with support from the Electric Power Research Institute and California Energy Commission

Ongoing Research

- WESTCARB Terrestrial Pilot Projects in CA and OR
 - Develop fire methodology including baselines and monitoring protocols
 - Collect data on: (1) Emissions from wildfires of varying severity, (2)
 Treatment costs, (3) Carbon stocks pre- and post-treatment, and
 (4) Regrowth following fires of different severity
- US Forest Service joint venture research agreement in CA
 - Classify national forest lands for treatment
 - Quantify net carbon benefits of fuels reduction and bioenergy on national forest lands

Methodology for Determining Emission Reductions from Reducing

Fuel Loads

Hazardous	Age Class						
Fuel Load	<10 yrs	10-40 yrs	40-80 yrs	>80 yrs			
Low		Assign emissions factors based on					
Medium	multi-criteria analysis. The objective of fuel treatments is to move from High to Medium to Low						
High	hazardous fuel factor.						

Methodology Panel meets in Redding October 24-25.

Does hazardous fuel removal make economic sense?

- Quantifiable sources of revenue
 - Emissions credits for avoided GHG emissions
 - State and federal fire suppression costs
 - Bioenergy
- Prospective sources of revenue
 - Reduced emissions of other pollutants
 - Reduced insurance losses

U. S. Biomass Energy Experience

Electricity from wood residues:

312 plants with 6,585 MWe capacity

Heat from wood residues:

80% of wood energy use by forest product companies is heat or steam in 3000+ plants

- Cost to produce power
 - \$0.05/kWh with free fuel on site
 - \$0.09/kWh with fuel at \$40/ton

Feedstocks

- Bioenergy Plan for California
 - 30 million dry tons available
 - 4 MDT used today at 28 power plants
 - Ag 29% -- > 50% animal manure
 - Forest 45% -- > 50% slash & thinnings
 - MSW 26%

Heat vs Power vs Liquid Fuels

- Heat for thermal applications
 - Each \$10 per ton fuel adds \$0.63/million
 BTUs
- Power generation
 - Each \$10 per ton fuel cost adds \$0.01/kWh
- Liquid fuels
 - Each \$10 per ton fuel cost adds \$0.10/gallon

Potlatch Biorefinery

Projected yield of 50-55 gallons per BDT.

California Air Emissions from Burning Biomass

10 year annual average (tons/day)	Reactive Organic Gases	СО	NOx	SOx	PM10
Agriculture	19.3	216	5.6	0.2	25.6
Range	23.5	309	3.7		45.3
Forest	28.4	720	6		52.1
Wildfire	128.4	2,482	79.4	24.5	253.4
Wood-Fired Boilers	0.37	50	5.1	0.5	1.1

Source – California Air Resources Board Emissions Inventory 2004

Linking Terrestrial with Geologic Sequestration

